COOLING OF A SEMIINFINITE BODY WITH NONLINEAR HEAT
LIBERATION FROM THE SURFACE
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Expressions are obtained which describe the changes in surface temperature of a
semiinfinite body over short and long terms in problems with nonlinear boundary
conditions.

We will present a technique for solution of problems with nonlinear boundary conditions
using the following example, which is of practical interest:
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We must find the surface temperature as a function of time T = Tg(t).

The problem of Eqs. (1)-(4) was considered previously in [1]., The proposed solution
technique is significantly simpler if it is not required that the temperature field be de-
termined, and, moreover, it permits deriving the asymptotic cooling law for large time per-

iods.
It is well known that Egs. (1)-(3) lead to an expression relating Tg and BT/BXIX = o in
the form (see, e.g., [2, 3])
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Eliminating 3T/3x|y = o from Eqs. (5) and (4), we obtain an equation defining the de-

sired function Tg(t):
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We can find a solution of (6) in the form of a power series
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since the transform DV transforms a power series into another power series:
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Substituting (7) in (6), using (8), and equating coefficients of similar powers of ¢,
we obtain a system of algebraic equations for sequential determination of a,, which then
permits finding a solution in the form
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We will study the convergence of series (9). Applying to Eq. (6) the operator D‘l/z,
we obtain the equation
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which can be used for the solution in place of (6).

We add to Eq. (10) the additional expression

= (11)
y/
and seek a solution in the form of (7), where we take a, -~ b,. Using Eq. (8), it can be
shown that [bn[3> |anl The roots of the fourth-order algebralc equation are representable

by a finite combination of radicals, so that the solution of Eq. (11) can be represented as

a series in powers of tt/2 having a finite radius of convergence. Then, in view of the in-
equality established above, series (9) has at least a finite radius of convergence. Equation
(9) is convenient for practical calculations if oT3t'/2 << 1.

To find the solution as t - =, we consider the problem of calculating the asymptotic
value of the integral ,
T
= f -f() dt.
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We rewrite (12) in the form
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We assume that the function f(t) == 0 and has the following properties: f >>0; jf(t)dr<100'
°

f(1) < const t7Y, where 1 < v < 2, As t -+ =, the first term of (13) gives
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The second term of (13) for f£(t) of the form indicated is greater than the function
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which falls off as t + « more rapidly than t~'/2 for the v values indicated. Thus, the
asymptotic expression of (12) as t + = is given by (14). Using the latter, we obtain from

(6)

1171



1
W(Tﬂ - Ts) o aT;l .

Neglecting the small quantity T4 within the parentheses, we find the final expression
for the change in surface temperature at large times:
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The expression obtained corresponds to the function f(t) = t‘s/“ in the second term of (13),
for which (14) is valid. Similarly, if instead of (4) the heat liberation law has the form

2 2|
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one can obtain a solution for short times in the form of (7). 1If f(TS) is a polynomial of

fourth degree in Tg (without a free term), its convergence is proved just as in the deriva-
tion of (9).

For large times, if f£(Tg) = oTh + O(Tg+€), g > 0, we have

= f(T:) >0, (16)
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In accordance with the conditions for deriving (14), Eq. (17) is proven if 1 < (1/2u) + 1 <
2, i.e., u > 1/2. The question of the validity of (17) for n=C 1/2 has not been studied.
The case u = 1, where the problem reduces to the linear case, can be checked by conventional
methods.

NOTATION

a, thermal diffusivity; ap, b,, series coefficients; DY, partial differentiation symbol;
f, arbitrary function; J, integral; T, temperature; t, time; x, coordinate; @, combination
constant; €, constant; A, thermal conductivity; o, nonlinear radiation law constant; T, auxil-
iary integration variable; u, v, exponents. Subscripts: s, surface; 0, initial moment.

LITERATURE CITED

1. J. C. Jaeger, "Condition of heating a solid with a power law of heat tramsfer at its
surface," Proc. Camb. Philos. Soc., 46, 634-641 (1950).

2. A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow
(1967).

3.  Yu. I. Babenko, "Heat transfer in a nonuniformly cooled bar," Inzh,-Fiz. Zh., 26, No. 3,
516-522 (1974).

1172



