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Expressions are obtained which describe the changes in surface temperature of a 
semiinfinite body over short and long terms in problems with nonlinear boundary 
conditions. 

We will present a technique for solution of problems with nonlinear boundary conditions 
using the following example, which is of practical interest: 

_ _ 0 - - a - -  T=0 ,  0~<x<oo, 0 < t < o o ,  (1) 
Ot a~ 

Tl,=o = To = const, (2)  

TI~=~ = To = const, (3) 

z ~ | = 
a t e .  (4) 

OX ~=0 
We must find the surface temperature as a function of time T = Ts(t). 

The problem of Eqs. (1)-(4) was considered previously in [i]. The proposed solution 
technique is significantly simpler if it is not required that the temperature field be de- 
termined, and, moreover, it permits deriving the asymptotic cooling law for large time per- 
iods. 

It is well known that Eqs. (1)-(3) lead to an expression relating T s and ~T/3xIx = o in 
the form (see, e.g., [2, 3]) 

t 

_1/- 7 0 ( T o - - T )  I =D1/2(To_T~)_  1 d ~To--T . (~)  
Ox x=o V a  at J l/t"2-x dT 

0 

o r  

t I 1SdTs ,' , 
Ox .... x=0 ~/-~ d--~ g t - -  ~ d'~. (5) 

0 

E l i m i n a t i n g  3T /3Xlx  = o f r o m  Eqs .  (5)  and ( 4 ) ,  we o b t a i n  an  e q u a t i o n  d e f i n i n g  t h e  d e -  
sired function Ts(t): 

D I,'2 (T o __ T~) -- 
t 

1 ; dTs(x) 
V~- & 

0 

d~: = a T e ,  ~ =alYa/~ . .  (6) 

We can find a solution of (6) in the form of a power series 

T = T O -- 2 antn/2, 
n.~.l 

(7) 

since the transform D ~ transforms a power series into another power series: 
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D V t ~ _  P(~+l)  #-v. 
r(~+ I--~) 

(8) 

Substituting (7) in (6), using (8), and equating coefficients of similar powers of t, 
we obtain a system of algebraic equations for sequential determination of an, which then 
permits finding a solution in the form 

Ts/To = 1.--(2/V-~-~ ) (~T~) t  ' /2 + 4 (aT~)2t - -  [(4/3 V~-)  + (2/r 

X (aT~)~t 3/2 + [(275/4n) + (48/a  3/~) -- (12/~z)](aT3o)~t~--. . .  

(9) 

We will study the convergence of series (9). 
we obtain the equation 

Ts= To -- ~D-~/2T~ = T~ -- --- 

Applying to Eq. (6) the operator D -~/2, 

which can be used for the solution in place of (6). 

We add to Eq. (i0) the additional expression 

t ! T4 (~) 
0 

d,, (io) 

2~ V;-T 4 T, = T o + ~--~ ~ (ii) 

and seek a solution in the form of (7), where we take a n § b n. Using Eq. (8), it can be 
shown that Ibn[~ lan[. The roots of the fourth-order algebraic equation are representable 
by a finite combination of radicals, so that the solution of Eq. (ii) can be represented as 
a series in powers of t I/= having a finite radius of convergence. Then, in view of the in- 
equality established above, series (9) has at least a finite radius of convergence. Equation 
(9) is convenient for practical calculations if aT~tl/2 << I. 

To find the solution as t § ~, we consider the problem of calculating the asymptotic 
value of the integral t 

d -- (12) 
O 

We rewrite (12) in the form 

t t t t 

d -  FF  f(w)d,+ f(z) Vt-~-~ VU Vt- .. [(z)dz+FT [(t2) -1/i- z t dz. (13) 
0 0 0 0 

t 

We assume that the function f(t) ~ 0 and has the following properties: f ~0; ~/(~)dT<oo; 

0 
f ( z )  < c o n s t  I: - ' ~ ,  w h e r e  1 < v < 2.  As  t § ~ ,  t h e  f i r s t  t e r m  o f  ( 1 3 )  g i v e s  

,f 
0 0 

(14) 

The second term of (13) for f(t) of the form indicated is greater than the function 

1 

�9 corlst z_V 1 1 d z <  v - ~  ' 
v -  l-l-- V l - - z  

t 2 o t 2 

which falls off as t + ~ more rapidly than t-~/2 for the ~ values indicated. Thus, the 
asymptotic expression of (12) as t + = is given by (14). Using the latter, we obtain from 
(6) 
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1 
] f~7  (T~ - -  Ts) ~ ocT,. 

Neglecting the small quantity T s within the parentheses, we find the final expression 
for the change in surface temperature at large times: 

To )1/4t--118 
T ~  ~FE " (15) 

The expression obtained corresponds to the function f(t) = t -5/~ in the second term of (13), 
for which (14) is valid. Similarly, if instead of (4) the heat liberation law has the form 

)~ aT1 = f(T~) > 0 ,  ( 1 6 )  
ax i~:o 

one can obtain a solution for short times in the form of (7). If f(T s) is a polynomial of 
fourth degree in T s (without a free term), its convergence is proved just as in the deriva- 
tion of (9). 

For large times, if f(T s) = oT~s + O(T~s+e), e > 0, we have 

1 I 

T ~  �9 ~ t  2~ (17) 
o~ V E  

In accordance with the conditions for deriving (14), Eq. (17) is proven if 1 < (i/2~) + 1 < 
2, i.e., ~ > 1/2. The question of the validity of (17) for ~ ~ 1/2 has not been studied. 
The case ~ = I, where the problem reduces to the linear case, can be checked by conventional 
methods. 

NOTATION 

a, thermal diffusivity; an, bn, series coefficients; DY, partial differentiation symbol; 
f, arbitrary function; J, integral; T, temperature; t, time; x, coordinate; ~, combination 
constant; c, constant; ~, thermal conductivity; o, nonlinear radiation law constant; T, auxil- 
iary integration variable; ~, v, exponents. Subscripts: s, surface; O, initial moment. 
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